The Potential of Targeting Brain Pathology with Ascl1/Mash1
نویسنده
چکیده
The proneural factor Achaete-scute complex-like 1 (Ascl1/Mash1) acts as a pioneering transcription factor that initializes neuronal reprogramming. It drives neural progenitors and non-neuronal cells to exit the cell cycle, and promotes neuronal differentiation by activating neuronal target genes, even those that are normally repressed. Importantly, force-expression of Ascl1 was shown to drive proliferative reactive astroglia formed during stroke and glioblastoma stem cells towards neuronal differentiation, and this could potentially diminish CNS damage resulting from their proliferation. As a pro-neural factor, Ascl1 also has the general effect of enhancing neurite growth by damaged or surviving neurons. Here, a hypothesis that brain pathologies associated with traumatic/ischemic injury and malignancy could be targeted with pro-neural factors that drives neuronal differentiation is formulated and explored. Although a good number of caveats exist, exogenous over-expression of Ascl1, alone or in combination with other factors, may be worth further consideration as a therapeutic approach in brain injury and cancer.
منابع مشابه
Ascl1 (Mash1) Defines Cells with Long-Term Neurogenic Potential in Subgranular and Subventricular Zones in Adult Mouse Brain
Ascl1 (Mash1) is a bHLH transcription factor essential for neural differentiation during embryogenesis but its role in adult neurogenesis is less clear. Here we show that in the adult brain Ascl1 is dynamically expressed during neurogenesis in the dentate gyrus subgranular zone (SGZ) and more rostral subventricular zone (SVZ). Specifically, we find Ascl1 levels low in SGZ Type-1 cells and SVZ B...
متن کاملControl of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system.
Mash1, a mammalian homologue of the Drosophila proneural genes of the achaete-scute complex, is transiently expressed throughout the developing peripheral autonomic nervous system and in subsets of cells in the neural tube. In the mouse, targeted mutation of Mash1 has revealed a role in the development of parts of the autonomic nervous system and of olfactory neurons, but no discernible phenoty...
متن کاملExpression of the proneural gene encoding Mash1 suppresses MYCN mitotic activity.
Murine Mash1 (Ascl1) is a member of the basic helix-loop-helix family of transcription factors and has been described to promote differentiation in some neural precursors. The process of differentiation is coordinated with a concomitant cell-cycle arrest, but the molecular mechanism of this process is unclear. Here, we describe for the very first time a direct regulation of an oncogene by a pro...
متن کاملNeural induction promotes large-scale chromatin reorganisation of the Mash1 locus.
Determining how genes are epigenetically regulated to ensure their correct spatial and temporal expression during development is key to our understanding of cell lineage commitment. Here we examined epigenetic changes at an important proneural regulator gene Mash1 (Ascl1), as embryonic stem (ES) cells commit to the neural lineage. In ES cells where the Mash1 gene is transcriptionally repressed,...
متن کاملAscl1/Mash1 Is a Novel Target of Gli2 during Gli2-Induced Neurogenesis in P19 EC Cells
The Sonic Hedgehog (Shh) signaling pathway is important for neurogenesis in vivo. Gli transcription factors, effector proteins of the Shh signaling pathway, have neurogenic properties in vivo, which are still poorly understood. To study the molecular basis of neurogenic properties of Gli2, we used a well-established embryonic stem cell model, the P19 embryonal carcinoma (EC) cell line, which ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017